應用

技術

物聯(lián)網(wǎng)世界 >> 物聯(lián)網(wǎng)新聞 >> 物聯(lián)網(wǎng)熱點新聞
企業(yè)注冊個人注冊登錄

數(shù)字孿生可以理解如何優(yōu)化供應鏈建模

2022-04-07 11:32 iot-now.com

導讀:越來越多的首席信息官 (CIO) 看到了數(shù)字雙胞胎的潛力。數(shù)字雙胞胎正在真實世界資產(chǎn)的軟件中創(chuàng)建虛擬、高度詳細和忠實的復制品,例如工廠或城市的一部分。

  圖數(shù)據(jù)庫專家Neo4j的 Maya Natarajan描述了如何使用基于知識圖的數(shù)字孿生技術來更好地管理供應鏈。

  越來越多的首席信息官 (CIO) 看到了數(shù)字孿生的潛力。數(shù)字孿生正在真實世界資產(chǎn)的軟件中創(chuàng)建虛擬、高度詳細和忠實的復制品,例如工廠或城市的一部分。

  然而,許多 CIO 都在努力優(yōu)化復雜的供應鏈,尤其是目前。我們的世界已經(jīng)受到大流行的打擊,面臨地緣政治緊張局勢,這給緊密相連但脆弱的供應鏈帶來了巨大壓力。好消息是,知識圖譜和數(shù)字孿生技術形式的技術可以提供對供應鏈優(yōu)化的見解。

  知識圖譜已經(jīng)存在了將近 50 年。他們主要在學術界憔悴,直到 2012 年,谷歌宣布在其搜索引擎背后使用知識圖譜。從那時起,分析、數(shù)據(jù)科學、機器學習和人工智能 (AI) 的融合產(chǎn)生了對知識圖譜的需求。這是因為他們有能力使這些技術中的每一種都更好、更智能、更具預測性。

  最基本的知識圖譜是一個相互關聯(lián)的數(shù)據(jù)集,富含意義或語義。它允許其用戶推理基礎數(shù)據(jù)并將其用于復雜的決策。

  知識圖之所以有效,是因為它們的圖數(shù)據(jù)庫模式。原因在于 SQL 和關系在支持查詢方面的固有局限性。

  這也取決于您要在供應鏈環(huán)境中使用的數(shù)據(jù)的特定形狀。

  從大數(shù)據(jù)到小而廣的數(shù)據(jù)?

  當今世界的數(shù)據(jù)有各種形式和大小,但 CIO 發(fā)現(xiàn)擁有最深刻洞察力的數(shù)據(jù)絕非易事。包含最深刻見解的數(shù)據(jù)是復雜的、相互關聯(lián)的,并且可以是深度分層和遞歸的。事實上,100 次中有 99 次是隱藏的。在大流行之前,我們曾經(jīng)談論過大數(shù)據(jù)?,F(xiàn)在,轉向了 Gartner 所稱的“小型和廣泛”數(shù)據(jù)。小而寬的數(shù)據(jù)提供了更多的上下文,尤其是對于機器學習程序,這就是我們需要解決的問題。

  事實是 Small and Wide 無法用傳統(tǒng)技術進行分析。當這樣復雜的數(shù)據(jù)被攝取到屬性圖存儲中時,數(shù)據(jù)之間的關系被編碼。這些關系為數(shù)據(jù)提供了第一級上下文。在圖表中,這種“動態(tài)上下文”意味著圖表會隨著新信息的動態(tài)添加而增長并變得越來越豐富。

  對于知識圖譜,從存儲中讀取關系并查詢圖就像遍歷圖一樣簡單。團隊可以添加第三個元素,語義,以獲得完整的知識圖,以及算法和其他工具。事實是,使用圖形技術創(chuàng)建豐富的、反應性的復雜性表示非常容易,就像供應鏈的數(shù)字孿生一樣。

  大流行加劇了供應鏈缺乏可見性,但也很難獲得對供應鏈的完全可見性,因為它們是復雜的多維連接的數(shù)字網(wǎng)絡。因此,它們只能真正建模為知識圖譜。這是連接從材料到產(chǎn)品、工廠到配送中心和運輸?shù)乃蟹矫娴淖罴压ぞ?。知識圖提供了上下文,因此可以整體地做出決策,同時考慮到許多相互關聯(lián)的依賴關系。

  用于更好地管理供應鏈的數(shù)字孿生知識圖將數(shù)據(jù)整合在一起并創(chuàng)建連接的虛擬供應鏈。它使管理人員能夠更好地組織、分析和可視化他們的數(shù)據(jù)。管理人員可以對供應鏈中的所有產(chǎn)品、供應商和設施,以及它們之間的關系,獲得可追蹤且深入的了解。

  電廠管理

  Tata Consulting 的 TCS IP2 電廠管理 SaaS 服務通過采用由知識圖推動的數(shù)字孿生服務得到了極大的增強,幫助其客戶減少了 9% 的排放,降低了燃料利用率,并獲得了 600 萬美元(5.47 歐元)萬)每年的運營節(jié)省。這只是一個例子。

  還有其他一些知識圖譜的例子同樣可以明顯地提升底線。將供應鏈或制造數(shù)字孿生放入圖表中,可以讓您在從石油和天然氣行業(yè)到全國零售分銷的所有領域都獲得真實世界的保真度。

  復雜數(shù)據(jù)自然建模為知識圖譜

  從物流和運營,一直到營銷銷售和服務,復雜供應鏈用例的數(shù)字孿生戰(zhàn)爭已經(jīng)在發(fā)生。

  如果您正在構建供應鏈數(shù)字孿生模型,則應將其建模為知識圖譜。這是因為您想要捕獲的復雜數(shù)據(jù)供應鏈自然而然地更容易建模為知識圖譜。為了達成交易,知識圖譜提供了構建、管理和查詢企業(yè)級數(shù)字孿生模型所需的靈活性、性能和分析能力。

cloud-3843352_1280.jpg