技術(shù)
導(dǎo)讀:工業(yè)制造在標(biāo)準(zhǔn)、互聯(lián)等領(lǐng)域始終是很特殊的,現(xiàn)在談工業(yè)4.0與AI是否為時(shí)過(guò)早?AI在工業(yè)4.0時(shí)代是否真的在發(fā)揮作用,以及究竟發(fā)揮到何種程度?
意大利有家公司叫ROJ,這家企業(yè)專注于針對(duì)工業(yè)領(lǐng)域的電子技術(shù),產(chǎn)品典型如基于ARM Cortex-M/A、FPGA的工業(yè)板和模塊。這家公司有個(gè)特色,是“基于客戶軟件、硬件需求來(lái)提供個(gè)性化解決方案”。其典型客戶如Mares——這是個(gè)生產(chǎn)潛水裝備的企業(yè),包括潛水表。Mares的特色也在滿足不同客戶的產(chǎn)品定制化需求。而“定制化”就意味著產(chǎn)品生產(chǎn)周期必須短,制造響應(yīng)速度必須快,而且可能某一款產(chǎn)品的需求量還不大。實(shí)際上越來(lái)越多的制造商開(kāi)始轉(zhuǎn)向這種量不大,但品種多樣的生產(chǎn)模式,這也是工業(yè)4.0的重要特點(diǎn)。
這在傳統(tǒng)的生產(chǎn)模式中是不可想象的,直到數(shù)字工廠、智能制造開(kāi)始出現(xiàn):不同小訂單之間的不同需求,生產(chǎn)設(shè)備可以很方便地通過(guò)數(shù)字操控的方式實(shí)現(xiàn)轉(zhuǎn)變和協(xié)調(diào)——當(dāng)然還有IT/OT融合、TSN的出現(xiàn)、各類統(tǒng)一與融合標(biāo)準(zhǔn)在工業(yè)領(lǐng)域的出現(xiàn),都是實(shí)現(xiàn)這種操作的必要條件。不過(guò)這些不是本文要探討的核心。
ROJ在智能制造時(shí),所選方案的其中一個(gè)關(guān)鍵是Valor Material Management材料管理系統(tǒng)——這是來(lái)自西門子數(shù)字工業(yè)軟件的一部分。ROJ首席執(zhí)行官Franco Oliaro曾表示:材料需要在正確的時(shí)間、正確的位置提供,而制造現(xiàn)場(chǎng)的停工往往是因?yàn)椴牧蠜](méi)有到位。數(shù)字化的材料管理系統(tǒng)能做的就是材料分發(fā),在需要材料的時(shí)候確保其準(zhǔn)備就緒。
這個(gè)例子實(shí)際只是數(shù)字化生產(chǎn)和工業(yè)4.0的基本應(yīng)用。當(dāng)生產(chǎn)設(shè)備本身變得越來(lái)越復(fù)雜,越來(lái)越智能,就會(huì)產(chǎn)生海量數(shù)據(jù)。當(dāng)這些數(shù)據(jù)熔于一爐后做數(shù)據(jù)分析,不僅用以了解過(guò)去的生產(chǎn)狀況,同時(shí)利用機(jī)器學(xué)習(xí)還能提高未來(lái)生產(chǎn)質(zhì)量、降低制造成本,即是AI技術(shù)對(duì)工業(yè)4.0的推動(dòng)了。
工業(yè)制造在標(biāo)準(zhǔn)、互聯(lián)等領(lǐng)域始終是很特殊的,現(xiàn)在談工業(yè)4.0與AI是否為時(shí)過(guò)早?AI在工業(yè)4.0時(shí)代是否真的在發(fā)揮作用,以及究竟發(fā)揮到何種程度?這是我們期望以由上至下的方式,從工業(yè)制造AI解決方案、AI芯片、EDA,以及實(shí)際應(yīng)用幾個(gè)層面,來(lái)窺見(jiàn)當(dāng)下工業(yè)制造的AI技術(shù)現(xiàn)狀。
AI智能制造解決方案能做什么?
“傳感器數(shù)據(jù)速率正在持續(xù)增長(zhǎng)。大部分客戶現(xiàn)如今的工廠傳感器數(shù)據(jù)采集速率還在1Hz,但越來(lái)越多的芯片制造商收集速率達(dá)到了10Hz、100Hz。晶圓廠的數(shù)據(jù)量級(jí)現(xiàn)在開(kāi)始進(jìn)入PB級(jí)別,而不再是MB或者TB?!盉ISTel首席執(zhí)行官W.K. Choi表示,“客戶需要更出色的分析來(lái)驅(qū)動(dòng)產(chǎn)品質(zhì)量提升;工程師則期望更快地進(jìn)行根因分析,近實(shí)時(shí)地(in near real time)、準(zhǔn)確地解決影響良率和工程生產(chǎn)的問(wèn)題。”這能說(shuō)明什么問(wèn)題?BISTel是一家提供智能制造解決方案的韓國(guó)企業(yè),解決方案離實(shí)際應(yīng)用總是靠的更近。
以半導(dǎo)體制造為例,我們先來(lái)看一個(gè)例子:晶圓制造發(fā)生不良率高的問(wèn)題時(shí),常規(guī)手法是工程師們調(diào)查并討論,這個(gè)過(guò)程一般需要很久。如W.K. Choi所說(shuō),實(shí)現(xiàn)數(shù)字生產(chǎn)的工廠,傳感器數(shù)據(jù)采集速率現(xiàn)如今已經(jīng)很高了。針對(duì)晶圓生產(chǎn)不良率高的問(wèn)題,可觀察的參數(shù)至少包括溫度、振動(dòng)、壓力等各項(xiàng)指標(biāo)。如果針對(duì)所有相關(guān)指標(biāo)做監(jiān)測(cè),那么分析難度自然可以得到降低。在這個(gè)例子中,不少晶圓片靠近邊緣位置出現(xiàn)問(wèn)題,因此成為“bad”晶圓。
BISTel的HMP(Health Monitoring & Prediction)在數(shù)據(jù)追蹤中,系統(tǒng)列出總共6個(gè)導(dǎo)致良率問(wèn)題的最優(yōu)關(guān)聯(lián)度參數(shù),其中前兩個(gè)分別是蝕刻工序的最后一步,電流發(fā)生激增;以及氦氣值明顯降低(圖1)。蝕刻流程的最后一步就是氦氣分離,這一例的“根因”就是在分離過(guò)程中,托盤與晶圓邊緣接觸,產(chǎn)生小范圍火花——所以電流出現(xiàn)了激增,與此同時(shí)托盤某些氦氣口堵塞造成氦氣值降低。
在晶圓制造良率問(wèn)題的“根因分析”這一例中,至少能夠表現(xiàn)持續(xù)增長(zhǎng)的“數(shù)據(jù)速率”是怎么回事,以及將原本需要以天、周為單位計(jì)的根因分析時(shí)間縮短到分鐘、小時(shí)級(jí)別內(nèi)。而AI技術(shù)在此處的核心,即如何利用海量數(shù)據(jù)做分析,并得出結(jié)論。
“具備AI能力的智能應(yīng)用,可讓系統(tǒng)和流程實(shí)現(xiàn)自動(dòng)化,讓客戶得以近實(shí)時(shí)地針對(duì)每天的生產(chǎn)問(wèn)題,做出檢測(cè)(detection)、分析(analyses)和預(yù)測(cè)(prediction)解決方案?!盬.K. Choi說(shuō),“現(xiàn)在我們?cè)谏a(chǎn)流程中,融入了更多強(qiáng)有力的AI分析,能夠從這些流程中學(xué)習(xí)。我們隨后就會(huì)把這些新的智能,應(yīng)用到知識(shí)庫(kù)(knowledge base)中。”
這里的“知識(shí)庫(kù)”即是AI在W.K. Choi所說(shuō)“預(yù)測(cè)”中的大腦,其中包含所有“知識(shí)點(diǎn)”和解決方案,并通過(guò)學(xué)習(xí)不斷完善。這里再來(lái)看一個(gè)例子,在某晶圓廠半導(dǎo)體制造CVD(化學(xué)氣相沉積)流程中,追蹤發(fā)現(xiàn)某一天(本例為4月18日)出現(xiàn)了異常高的報(bào)警數(shù),很多晶圓質(zhì)量都受到影響(圖2)。報(bào)警內(nèi)容為:“TDS”設(shè)備某節(jié)氣閥發(fā)生位置偏移。如果這份數(shù)據(jù)拉長(zhǎng)到為期半個(gè)月,那么很容易發(fā)現(xiàn),在高報(bào)警事件發(fā)生的前兩天,數(shù)據(jù)就已經(jīng)顯現(xiàn)出節(jié)氣閥位置發(fā)生潛在漂移——而且早在10天以前,前序壓力就因?yàn)楣?jié)氣閥位置偏移而出現(xiàn)不規(guī)則現(xiàn)象。
那么實(shí)際在發(fā)生高報(bào)警數(shù)之前,通過(guò)預(yù)測(cè)性維護(hù)(Predictive Maintenance)就能率先預(yù)知問(wèn)題,“在錯(cuò)誤發(fā)生之前就預(yù)測(cè)到錯(cuò)誤”,以避免故障停機(jī)時(shí)間,因此得以提升效率并節(jié)省成本。更多的“預(yù)測(cè)”行為還包括預(yù)測(cè)設(shè)備的剩余可用壽命(RUL),以及各種執(zhí)行基于條件的的預(yù)測(cè)性分析。
這里“基于條件”的預(yù)測(cè)性分析可認(rèn)為是智能制造的核心產(chǎn)物。就好像日常的汽車保養(yǎng),仍是基于時(shí)間或里程的:如每隔一個(gè)固定時(shí)間或固定行駛里程前往4S店做保養(yǎng);但如果能夠針對(duì)汽車發(fā)動(dòng)機(jī)轉(zhuǎn)速、溫度、振動(dòng)等各種參數(shù)做關(guān)聯(lián)分析和預(yù)測(cè),則在綜合所有參數(shù)與AI分析過(guò)后,系統(tǒng)得出現(xiàn)在是否需要維護(hù)或下一次維護(hù)時(shí)間應(yīng)該是在什么時(shí)候,這才是節(jié)約保養(yǎng)成本、提高生產(chǎn)效率的最佳方案。
現(xiàn)在我們知道,AI在智能制造中的應(yīng)用,至少可有檢測(cè)、分析和預(yù)測(cè)三步驟。不過(guò)這依然不是AI的全部。在BISTel的定義中,AI能夠?qū)崿F(xiàn)的終極目標(biāo)遠(yuǎn)不止此?!癆I應(yīng)用,可嵌入已習(xí)得的知識(shí),并實(shí)現(xiàn)自動(dòng)化操作;應(yīng)用AI獲取的知識(shí)庫(kù),具備自主控制、自主治愈的能力。”
這句話強(qiáng)調(diào)的是AI學(xué)習(xí)的“自適應(yīng)”能力,全過(guò)程包括完全自主地發(fā)現(xiàn)問(wèn)題、學(xué)習(xí)問(wèn)題,并采取行動(dòng)。工廠內(nèi)部的這個(gè)過(guò)程無(wú)需或少有人工干預(yù)。W.K. Choi說(shuō):“這是我們理想中的智能生產(chǎn)。”即便這一步尚未達(dá)成。
當(dāng)工業(yè)MCU/SoC開(kāi)始增加AI單元
從上述解決方案的實(shí)例來(lái)看,AI如何部署似乎還不夠明朗。我們嘗試往下看解決方案底層的硬件支持。不難想見(jiàn),上層AI應(yīng)用需求自然能夠帶動(dòng)下層AI芯片或?qū):说呐d盛,比如工業(yè)現(xiàn)場(chǎng)生產(chǎn)用機(jī)械臂或電機(jī)內(nèi)部的MCU/SoC——畢竟我們反復(fù)在說(shuō)AI這一技術(shù)熱點(diǎn)是貫徹在整個(gè)垂直行業(yè)的。
常規(guī)能夠想到的AI專核通常是具備高度并行計(jì)算能力+片上存儲(chǔ)+低精度計(jì)算的ASIC核心,尤其如果是特別針對(duì)某個(gè)具體的工業(yè)應(yīng)用場(chǎng)景。不過(guò)行業(yè)內(nèi)頗具代表性的瑞薩電子DRP(Dynamic Reconfigurable Processor)技術(shù),或稱e-AI(嵌入式AI,DRP是e-AI技術(shù)的一部分)在思路上還略有不同。這里還是先舉個(gè)例子。
在圖3故障預(yù)判解決方案中,工業(yè)制造現(xiàn)場(chǎng)電機(jī)運(yùn)行時(shí),可通過(guò)加速度傳感器來(lái)采集電機(jī)運(yùn)行振動(dòng)情況,這些采集的數(shù)據(jù)上傳到云服務(wù)器,經(jīng)由云服務(wù)器的學(xué)習(xí)軟件做深度學(xué)習(xí)(基于谷歌TensorFlow神經(jīng)網(wǎng)絡(luò)架構(gòu));再由解釋器將高級(jí)語(yǔ)言AI模型翻譯成MCU可識(shí)別的機(jī)器語(yǔ)言,AI控制軟件將AI模型下載到本地e-AI單元,實(shí)現(xiàn)故障預(yù)判。
這套系統(tǒng)監(jiān)測(cè)的是電機(jī)運(yùn)行情況,并可預(yù)測(cè)其剩余使用壽命,屬于相當(dāng)?shù)湫偷腁I預(yù)測(cè)性維護(hù)使用場(chǎng)景。在這一例中,由于硬件的具象化,我們得以更清晰地理解預(yù)測(cè)性維護(hù)的流程是什么樣。瑞薩電子中國(guó)工業(yè)自動(dòng)化事業(yè)部高級(jí)總監(jiān)徐征告訴我們,除了預(yù)測(cè)性維護(hù),e-AI還能用于異常檢測(cè),提高質(zhì)量,自動(dòng)化檢驗(yàn)。
“我們已經(jīng)在一些工業(yè)生產(chǎn)現(xiàn)場(chǎng)取得驗(yàn)證性測(cè)試結(jié)果,比如瑞薩電子那珂工廠,GE醫(yī)療(日本)日野工廠。那珂工廠的驗(yàn)證測(cè)試結(jié)果表明,以下三點(diǎn)在智慧工廠中是完全可行的:
- 使用AI識(shí)別異常結(jié)果。通過(guò)為復(fù)雜波形設(shè)置閾值,消除難點(diǎn)。
- 顯著減少錯(cuò)誤信息,從每月每臺(tái)機(jī)器大約50條錯(cuò)誤信息降低為零,消除工程師負(fù)擔(dān)。
- 準(zhǔn)確檢測(cè)異常結(jié)果。通過(guò)使用高分辨率數(shù)據(jù),將異常結(jié)果檢測(cè)率提高6倍以上。”
在我們的理解中,DRP在專用和通用,或者在性能和可編程性之間是個(gè)相對(duì)折中的方案。從結(jié)構(gòu)上來(lái)看,這種動(dòng)態(tài)可重構(gòu)處理器包含可編程數(shù)據(jù)通道硬件(PE處理單元陣列)和狀態(tài)轉(zhuǎn)換控制器(完全可編程有限狀態(tài)機(jī)),是十分典型的軟件定義芯片(圖4),可針對(duì)工業(yè)嵌入式設(shè)備的AI推理(inference)做加速。
“算法的種類和大小可由同一個(gè)DRP硬件進(jìn)行時(shí)間復(fù)用處理。其靈活性非常適用于AI產(chǎn)業(yè)的DNN(深度神經(jīng)網(wǎng)絡(luò))的快速演化。”徐征表示,“DRP可對(duì)硬件資源和應(yīng)用場(chǎng)景做動(dòng)態(tài)調(diào)整,做并發(fā)處理,幫助在后臺(tái)做很多場(chǎng)景的匹配和預(yù)處理?!崩鐚?duì)可動(dòng)態(tài)加速圖像處理算法,達(dá)到相比通用CPU快10倍的速度。
類似DRP這類AI硬件的出現(xiàn),及在兼顧彈性基礎(chǔ)上對(duì)性能的追逐,實(shí)際都是智能制造開(kāi)始全面步入AI的第一步。
在瑞薩電子的設(shè)想里,“首先會(huì)提供附加AI單元的解決方案以拓展市場(chǎng),從而使e-AI實(shí)用性得到市場(chǎng)廣泛理解,再推進(jìn)工業(yè)終端設(shè)備e-AI預(yù)安裝解決方案普及?!毙煺髡f(shuō)。這段話大概是瑞薩電子推廣工業(yè)AI芯片的策略,但或許還能表明,智能制造和數(shù)字工廠的AI仍處在新生期,所以前期提供的是“附加AI單元”解決方案。
從宏觀到微觀世界的數(shù)字復(fù)刻
而從MCU/SoC的高度繼續(xù)再往下層或供應(yīng)鏈上層走,是EDA廠商。主流EDA廠商目前最特別的存在應(yīng)該就是Mentor了:這家公司在被西門子并購(gòu)以后,劃歸西門子的“數(shù)字工廠(Digital Factory)”業(yè)務(wù)旗下,且愈發(fā)看重“工業(yè)軟件領(lǐng)域”的競(jìng)爭(zhēng)力,而不只是以前那個(gè),幫助系統(tǒng)與IC設(shè)計(jì)企業(yè)進(jìn)行高級(jí)印刷電路板和芯片設(shè)計(jì)的EDA廠商。
西門子當(dāng)年收購(gòu)Mentor的業(yè)務(wù)邏輯一直被人多番揣測(cè)。Mentor中國(guó)區(qū)總經(jīng)理凌琳在接受采訪時(shí)表示:“我們絕大部分客戶,都同時(shí)使用機(jī)械和電子工具來(lái)設(shè)計(jì)、制造產(chǎn)品。為了讓機(jī)電一體化產(chǎn)品的設(shè)計(jì)、工程和制造更高效,一個(gè)集成性的軟件平臺(tái)就很重要?!蔽鏖T子Mechatronics就是連接了機(jī)械和電子領(lǐng)域的解決方案。
西門子給予Mentor的投入,另外包括針對(duì)更多EDA相關(guān)企業(yè)的進(jìn)一步收購(gòu),如Sarakol、Infolytica、Austemper等,顯然是對(duì)上述策略的進(jìn)一步補(bǔ)全。好比Infolytica在低頻電磁模擬,包括電動(dòng)馬達(dá)、發(fā)電機(jī)和電磁設(shè)備設(shè)計(jì)支持方面的能力。所以凌琳說(shuō)“電子設(shè)計(jì)、機(jī)械設(shè)計(jì)領(lǐng)域的協(xié)同”,“提供了整個(gè)閉環(huán)的系統(tǒng)設(shè)計(jì)。”其中的業(yè)務(wù)邏輯也變得一目了然。這是Mentor受西門子影響之時(shí),踐行“工業(yè)化之路”的代表。
用時(shí)下比較流行的話來(lái)說(shuō)即數(shù)字復(fù)刻版(或稱數(shù)字孿生,digital twin)。這個(gè)詞更像是個(gè)營(yíng)銷詞匯,EDA的仿真、驗(yàn)證原本就屬于典型的“數(shù)字復(fù)刻版”,是在芯片制造之前的數(shù)字復(fù)刻,只不過(guò)它是對(duì)微觀世界的復(fù)刻。西門子收購(gòu)Mentor以后的復(fù)刻,則既包含宏觀世界的機(jī)械設(shè)計(jì),也包含電子設(shè)計(jì)。在這套“閉環(huán)系統(tǒng)“中打造的數(shù)字復(fù)刻版,包含了整個(gè)生產(chǎn)環(huán)境或價(jià)值鏈:產(chǎn)品本身、產(chǎn)品的制造和性能,以及產(chǎn)品制造流程的完整復(fù)刻。在生產(chǎn)或制造前期,就對(duì)數(shù)字世界的產(chǎn)品、機(jī)器和設(shè)施設(shè)備進(jìn)行仿真與優(yōu)化,確保后續(xù)真實(shí)世界的制造生產(chǎn)。
西門子2018財(cái)年數(shù)字工廠業(yè)務(wù)營(yíng)收129.32億歐元,同比增長(zhǎng)11%;西門子PLM技術(shù)軟件(現(xiàn)已更名為西門子數(shù)字工業(yè)軟件)一年?duì)I收約在42億美元左右。無(wú)論是西門子的“數(shù)字工廠”,還是西門子數(shù)字工業(yè)軟件公司,都能表征工業(yè)4.0帶來(lái)的經(jīng)濟(jì)效益,似乎比單純的EDA業(yè)務(wù)更有協(xié)同優(yōu)勢(shì)。不過(guò)也正因如此,Mentor的EDA廠商角色定位,令其在工業(yè)4.0+AI方面更具發(fā)言權(quán)。
在機(jī)器學(xué)習(xí)IP方面,Mentor提供Catapult HLS AI/ML設(shè)計(jì)套裝,幫助芯片架構(gòu)師和設(shè)計(jì)師理解如何利用機(jī)器學(xué)習(xí)算法,以及構(gòu)建起低功耗的硬件加速器。它能夠展示如何將數(shù)字工具或DNN框架開(kāi)發(fā)的算法,轉(zhuǎn)為可綜合(synthesizable)C/C++/SystemC代碼,并最終綜合為RTL芯片硬件設(shè)計(jì)語(yǔ)言。中間環(huán)節(jié)展示哪部分算法在處理器上執(zhí)行更高效,以及若執(zhí)行于IC專用硬件單元?jiǎng)t能效比會(huì)是如何。
這類方案是對(duì)AI應(yīng)用大門的進(jìn)一步拓寬,或許HLS高層次綜合不僅代表了Mentor的策略,它更像是AI在各領(lǐng)域?qū)崿F(xiàn)普及的趨勢(shì),包括工業(yè)制造。當(dāng)然在此過(guò)程中,少不了應(yīng)用層做驗(yàn)證,包括協(xié)同建模(co-modeling)、Virtual-ICE、SW debug、性能監(jiān)測(cè)應(yīng)用等各種應(yīng)用驗(yàn)證技術(shù)。
除此之外,機(jī)器學(xué)習(xí)本身也在反哺EDA工具,比如在芯片測(cè)試期間,Tessent Yield Insight能夠告訴客戶和工廠,影響產(chǎn)量的錯(cuò)誤究竟是出現(xiàn)在芯片設(shè)計(jì)環(huán)節(jié)還是制造環(huán)節(jié);還有利用機(jī)器學(xué)習(xí)提升芯片良率的Calibre Machine Learning OPC(機(jī)器學(xué)習(xí)鄰近效應(yīng)修正)和Calibre LFD with Machine Learning;甚至利用半導(dǎo)體制造數(shù)據(jù),來(lái)反饋設(shè)計(jì)優(yōu)化流程方案,“比如說(shuō),同時(shí)采用X光和AOI(自動(dòng)光學(xué)檢測(cè))的時(shí)候,我們可以判斷哪些層級(jí)X光可以略過(guò),因?yàn)閄光是個(gè)慢速機(jī)器,經(jīng)常會(huì)成為制造瓶頸?!?/p>
現(xiàn)在的智慧工廠有多智能?
AI的最有趣之處大概就在于,整個(gè)技術(shù)供應(yīng)鏈上的諸多環(huán)節(jié),既通過(guò)出售AI技術(shù)來(lái)賺錢,同時(shí)自己也是AI技術(shù)的使用者。Mentor這樣的EDA廠商大概就是最好的例證。在探討了智能制造解決方案提供商、AI芯片制造商以及EDA廠商這三個(gè)層級(jí)之后,我們大致上已經(jīng)將AI現(xiàn)階段在智慧工廠的價(jià)值勾勒出來(lái)了,即便從芯片制造商層級(jí)就不難發(fā)現(xiàn),AI技術(shù)在工業(yè)制造中仍在發(fā)展初期。
除了文首提及ROJ在數(shù)字工廠方面借由西門子方案的實(shí)現(xiàn),如今在世界范圍內(nèi)逐步發(fā)展智能制造乃至AI技術(shù)的先進(jìn)工廠大約也不在少數(shù)。